Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/MR/7441--97-8073

Compressed Aeronautical Chart
Access Software

PerrY B. WiscHow
Mavura C. LoHRENZ

Mapping, Charting, and Geodesy Branch
Marine Geosciences Division

July 24, 1998

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
July 24, 1998

3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

Compressed Aeronautical Chart Access Software

5. FUNDING NUMBERS
574562500
Program Element No. DMA

Job Order No.

6. AUTHOR(S) Project No.
Perry B. Wischow and Maura C. Lohrenz Task No.
Accession No. DN154123
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Marine Geosciences Division
Stennis Space Center, MS 39529-5004

NRL/MR/7441--97-8073

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER
National Imagery and Mapping Agency
8613 Lee Hwy.

Fairfax, VA 22031-2137

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 words)

The Compressed Aeronautical Chart (CAC) data base is a global library of compressed, scanned, aeronautical
charts that support Navy and Marine Corps aircraft moving-map displays and mission planning systems. The source
for the CAC library is the National Imagery and Mapping Agency (NIMA) standard ARC (equal Arc-second Raster
Chart) Digitized Raster Graphics (ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of the Naval Research
Laboratory, Stennis Space Center, MS (NRLSSC), produced the CAC library from April 1989 until September 1995,
when NRLSSC transitioned the CAC Production System to NIMA.

This port is a programmer’s reference for accessing the CAC library via NRL-developed CAC Access Software,
which is a user-callable suite of utility programs. The CAC Access Software was written in ANS! C and is currently
running under the following operating systems: Open VMS, Unix, MS-DOS, Windows 3.1, Windows 95, and Macintosh.

15. NUMBER OF PAGES
32

14. SUBJECT TERMS

digital maps, optical storage, data bases, data compression, aeronautical charts,

mission planning 16. PRICE CODE

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified SAR

17. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT
Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

Compressed Aeronautical Chart Access Software
Perry B. Wischow and Maura C. Lohrenz

Contents
INETOAUCTION. ... veeiieceeireetesteeteeaesresteerestessessne e saesassessnesssessesnesssesnesnnanstossessnsrsstennssassessseesssessneenes 1
CAC ACCESS SOTIWATE......coceereereeririerriesteetessteeteetessesesessensetsssesessesessneasssssessssesstesnssessessassssssensecsas 3
High-Level Access ROULNESc.ccoevrieeeireiiiierniieinecinnteteicreieesnissesstessssssssessssssssosessassases 3
Low-Level Access ROULINES.......ccoevrierirneeiieerienienteeteeenteneenatsaeseeneeseesseeestessaesensestessnescsessnes 4
Miscellaneous ACCESS ROULINEScccveeveeeeirieenriericeerteeircetessestessestesnsssesseessessessssssassessasssesseenes 6
ACKNOWIEAGEIMENTS.....ecveeuereieeririeerteetererteseee st st e eeen e see st e e saness st enesnn st eennsssessssnsesasesassans 7
RETETEIICES ... eeeveerereeeieeresreecreeat et essae s eesaessae e esnaessaensassaesseeseesnsesseetassaassessaessasessesnseasssenssassssessensns 7
Appendix A: Entry Point Descriptions for High-Level Access Routines........cccoeeveeveiscencenennencne 8
Appendix B: Entry Point Descriptions for Low-Level Access Routines.........cooceeecererccrncenececnee 11
Appendix C: Entry Point Descriptions for Miscellaneous Access Routines.........ccccvvevucevenueneee. 23

Appendix D: High Level Function Calling Ordercc.cecceveevirvereenreirrneeseeneeesensessseessessenenenne 26

Introduction

The Compressed Aeronautical Chart (CAC) database is a global library of compressed, scanned,
aeronautical charts that support Navy and Marine Corps aircraft moving-map displays and
mission planning systems. The source for the CAC library is the National Imagery and Mapping
Agency (NIMA) standard ARC (equal Arc-second Raster Chart) Digitized Raster Graphics
(ADRG) image data set. ADRG is compressed and transformed into CAC via vector
quantization and color compression techniques. The Map Data Formatting Facility (MDFF) of
the Naval Research Laboratory, Stennis Space Center, MS (NRLSSC), produced the CAC library
from April, 1989, until September, 1995,

when NRLSSC transitioned the CAC Table 1. Available CAC scales and chart series

Production System to NIMA. Scale | Chart Series

NIMA distributes CAC installments on 1:5M | Global Navigation Chart (GNC)
Compact Disk Read-Only = Memory 1:2M | Jet Navigation Chart (JNC)
(CDROM). Each CDROM contains data at 1:1M | Operational Navigation Chart (ONC)
one of seven available chart scales, from 1:500k | Tactical Pilotage Chart (TPC)

1:5M (M=million) to 1:50k (k=thousand), as 1:250k | Joint Operational Graphics (JOG)
listed in table 1. As of 1995, there were 34 1:100k | Topographic Line Map (TLM) - 100
CDROMs in the CAC library (table 3). For a 1:50k | TLM-50

more recent listing, the reader is referred to

NIMA Customer Support.
Table 2. TS geographic zones
CAC data is structured according to the

Tessellated Spheroid (TS) map projection Z‘I’ge Zone name sf:’,:h;’ n Allot"tthf!r n
system. TS divides the world into five zones altude atitude
(table 2). Each zone is divided into rows and 0 | South Polar 90.00S | 51698

S. Temperate | 5169 S 31.38S
Equatorial 31.38 S 31.38 N
N. Temperate | 31.38 N 51.69 N
North Polar 51.69 N 90.00 N

columns of segments, and each segment
represents approximately 2 in x 2 in of paper
chart. The geographic coverage of a segment
is dependent on the chart scale and the zone in
which the segment is located. Lohrenz, et al.
(1993) describes the TS projection system in
more detail, and Lohrenz and Ryan (1990) documents the CAC file structure. The reader is
advised to become familiar with these reports prior to using the CAC Aceess Software.

PWN

This report is a programmer's reference for accessing the CAC library via NRL-developed CAC
Access Software, which is a user-callable suite of utility programs. The CAC Access Software
was written in ANSI C and is currently running under the following operating systems:
OpenVMS, Unix, MS-DOS, Windows 3.1, Windows 95 and Macintosh. Appendices A, B, and
C of this report contain the entry point descriptions for the High-Level, Low-Level and
Miscellaneous Access Routines, respectively. Appendix D contains the High-Level Function
Calling Order.

Table 3. CAC library installments as of September, 1995.

MDFF Library # DMA Stock # ed. Geographic Coverage Date
GNC (1:5M scale)

CD-1995-A-MAP6-00033 | ACNxxGNCxx01 | 1 | Worldwide coverage | o995
JNC (1:2M scale)

CD-1991-B-MAP5-10006 | ACNxxJNCxx01 1 | N/S Am., Greenland, Australia, USSR 10/91
CD-1892-A-MAP5-00008 | ACNxxJNCxx02 1 | Europe, USSR, Africa, China, Japan 03/92
ONC (1:1,000,000 scale)

CD-1994-A-MAP4-00032 | ACNxxONCxx01 1 | Eurasia 9/94
CD-1991-A-MAP4-00010 | ACNxxONCxx02 1 | N/S Am., Greenland, Iceland, Arctic O. 08/92
CD-1994-A-MAP4-00031 | ACNxxONCxx03 1 | India, Indonesia, S.Pacific 08/94
CD-1994-A-MAP4-00030 | ACNxxONCxx04 1 | Africa, Saudi Arabia 07/94
CD-1994-A-MAP4-00029 [ACNxxONCxx05 1 | S.America, Australia, So. Pacific 05/94
JOG (1:250,000 scale)

CD-1991-A-MAP2-10007 | ACNxx1501A09 1 Western U.S. 11/91
CD-1992-A-MAP2-00009 | ACNxx1501A10 1 Eastern U.S. 04/92
CD-1993-A-MAP2-00016 | ACNxx1501A16 1 Sea of Japan 03/93
CD-1993-A-MAP2-00017 | ACNxx1501A2021 1 S. China Sea 03/93
CD-1993-A-MAP2-00018 | ACNxx1501A27 1 Somalia/Ethiopia 04/93
CD-1993-A-MAP2-00019 | ACNxx1501A12 1 Western Mediterranean 05/93
CD-1993-A-MAP2-00020 | ACNxx1501A19 1 Saudi Arabia 05/93
CD-1993-A-MAP2-00022 | ACNxx1501A23 1 Caribbean 07/93
CD-1993-A-MAP2-00023 | ACNxx1501A13 1 Black Sea & Caspian Sea 09/93
CD-1993-A-MAP2-00024 | ACNxx1501A22 1 Central America 09/93
CD-1994-A-MAP2-00026 | ACNxx1501A04 1 U.K. & Baltic 02/94
CD-1993-A-MAP2-00027 | ACNxx1501A08 1 Alaska 02/94
CD-1994-A-MAP2-00028 | ACNxx1501A14 1 Afghanistan & NE Iran 05/94
TPC (1:500,000 scale)

CD-1995-C-MAP3-10001 | ACNxxTPCxx0710 3 | Update of U.S., Caribbean, and Panama | 09/95
CD-1991-B-MAP3-10002 | ACNxxXTPCxx0309A | 2 Update of Desert Storm 06/91
CD-1991-A-MAP3-10003 | ACNxxTPCxx0512A | 1 W. Pacific Rim & Hawaii 03/91
CD-1991-A-MAP3-10004 | ACNxxTPCxx0506 1 No. Pacific (incl. Alaska & NE USSR) 04/91
CD-1991-A-MAP3-10005 | ACNxxTPCxx0208A | 1 Med., Europe, Scandinavia, Iceland 06/91
CD-1992-A-MAP3-00011 | ACNXxTPCxx0411A | 1 India and China 10/92
CDB-1992-A-MAP3-00012 | ACNxxTPCxx0304 1 W. Russia and E. Mongolia 11/92
CD-1992-A-MAP3-00013 | ACNxxTPCxx0405 1 Siberia 01/93
CD-1992-A-MAP3-00014 | ACNxxTPCxx1216 1 Australia, E. Indonesia 01/93
CD-1982-A-MAP3-00015 | ACNxxTPCxx1014 1 S. America 01/93
CD-1993-A-MAP3-00021 | ACNxxTPCxx0809 1 N. Central Africa 07/93
CD-1993-A-MAP3-00025 | ACNxxTPCxx0815 1 Southern Africa and Madagascar 10/93

CAC Access Software

The CAC Access Software is made up of twelve files, including four C programs (*.c) and eight
include files (*.h), as listed in table 3. The CAC Access Software is designed to allow a
programmer both high-level and, if necessary, low-level access to a CAC CDROM. The high-
level routines will be sufficient for most applications, but a user may require low-level access for
more advanced applications that manipulate the image data.

Table 3. CAC Access Software files.

Programs Description Support files
cac_hlev.c High level CAC access routines
cac_llev.c Low level CAC access routines
cac_misc.c Routines to access non-image CAC | areadrc.h,
data files (e.g., audit trail files) areasorc.h,
cd_header.h,
dr_header.h,
sg_header.h,
pa.h
C language structures and definitions; i cac_inc.h
required by all four high-level programs
Definitions for TS projection system; i m4_const.h
required by all four high-level programs

High-Level Access Routines

The high-level CAC access routines, which are contained in the file cac_hlev.c, consist of
four entry points: cac_init, cac_inq_palette, cac_get lI, and cac_get rc. These routines initialize
the software, read the appropriate color palette, and retrieve the compressed CAC data for either
a specific geographic point (latitude and longitude) or segment (row and column). The high-
level routines will suffice for most user applications, such as displaying CAC data. Examples of
the recommended calling .sequences for these high-level routines are provided in the files
main_rc.c,andmain_1l.c (listed in Appendix D). Appendix A documents the high-level
routines in detail. They and listed here in the intended calling sequence:

* cac_init
Initializes the CAC retrieval software by allocating the necessary. memory for segment
buffering, reading the cd_id.dat and cd_covrg.dat files from the ID directory on the
specified device, and initializing the internal CAC data structures based on the contents of the
cd_id.dat and cd_covrg.dat files.

* cac_ing palette
Reads and returns the "day", "night" or "mono" color palette that corresponds to the retrieved
CAC segment data. Each CAC color palette file includes three separate palettes: the day
palette is appropriate for daytime flight, the night palette is used for nighttime flight, and the
mono palette uses only gray shades. See Lohrenz, et al., for more information about CAC
color palettes.

* cac get Il

Retrieves the pixel value specified by latitude and longitude. Also retrieves the entire
decompressed segment, if required.

* cac_get rc

Retrieves the entire decompressed segment specified by a TS row, column and zone.

Both cac_get Il and cac_get rc return the palette identifier for the color palette required to
display the data. If the user requests an invalid latitude and longitude coordinate from cac_ger_II
or an invalid row and column from cac_get rc the function will return an error status.

Low-Level Access Routines

The low-level CAC access routines, which are contained in the file cac_l1lev. ¢, consist of 23
entry points. These low-level routines are used by the high-level software presented in the
previous section. In addition, programmers that need to manipulate CAC data for more advanced
applications will utilize the low-level access routines. Appendix B documents these routines in
detail. They are listed here in alphabetical order, since the calling sequence may vary between
applications. All floating point numbers are “double” in C.

*

cac_free

Frees memory that was allocated by the low-level access routines. This function is called by
the high-level routine cac_init to free memory associated with the buffering of segment data.

decode_key

Decodes a TS keyname into its row and column components. A TS keyname is an encoded
form of the TS row and column and is used to generate the filename for the TS segment of
interest (see Lohrenz, et al., 1993, for more information about TS keynames and filenames).
The inverse function is encode_key.

decompress_segment
Reads the compressed CAC segment and its codebook, then decompresses the segment.

double_to_si
Converts a floating-point number to a scaled integer. (Note: this function reduces the
precision of the data). The inverse function is si_fo_double.

encode_key
Encodes a segment row number and column number into a keyname. The inverse function is
decode_key.

eq2pol

Converts equatorial zone latitude and longitude coordinates into polar zone latitude and
longitude coordinates (see Lohrenz, et al., 1993, for more information about TS polar and
non-polar coordinate systems). The inverse function is pol2eq.

get_decompressed_pixel

Retrieves the specified pixel from a compressed segment without decompressing the entire
segment. This is done by computing the location of the compressed data byte in a two-
dimensional array of compressed data bytes, given the pixel's x and y coordinates.

get_segment name
Builds the CAC compressed segment path name from the current palette area directory name,
row and column components, and TS zone of the requested segment.

latlon_calc

Converts a segment’s row and column values to a latitude and longitude coordinate. The TS
zone specification is required for the correct handling of overlap areas. The inverse function
isrc_cale.

load legend data

Reads the specified CAC legend data’s header, palette, and image files. Also returns a pointer
to the beginning of the legend image, along with the red, green, and blue (RGB) buffers and
the size in rows and columns of the legend image itself.

polZeq
Converts polar zone latitude and longitude coordinates to equatorial zone latitide and
longitude coordinates. The inverse function is eq2pol.

rc_calc

Converts a latitude and longitude coordinate to a segment’s row and column values. The zone
specification is required for the correct handling of overlap areas. The inverse function is
latlon_calc.

read_cd covrg

Reads the cd_covrg.dat file from the ID directory on the CAC CDROM. The
cd_covrg.dat file contains the approximate rectangular coverages for each palette area
(PA) on the CAC CDROM and the PA’s associated TS zone number. (Exception: zone
numbers were not included in the cd_covrg.dat file for early CAC CDROMSs. The first
CAC CDROM that did include zone numbers in its cd_covrg.dat file was MDFF library
#CD-1991-A-MAP3-10004. The structure "no_zone_cacs,” in cac_1llev.c, contains the
PA and zone number associations for all CACs produced prior to CD-1991-A-MAP3-10004).
The cd_id.dat must be read first (see read cd id) to correctly process the
cd_covrg.dat file.

read_cd_id
Reads the cd_id.dat file from the ID directory on the CAC CDROM.

read_compressed_segment

Reads the compressed segment and its codebook, and buffers them into an array of segments.
The number of segments that can be buffered is controlled by the argument passed to the
high-level routine cac init. Buffering the segments reduces the overhead involved in
re-reading an often-used segment.

read_palette
Reads and returns the "day", "night" or "mono" color palette for the retrieved CAC segment
data.

read_entire_palette
Reads the entire CAC color palette, including the day, night, and mono components. This
routine is used when an application requires the entire palette (i.e., during a copy operation).

read_pa_coverage
Reads the scaled integer latitude and longitude coordinates from the current PA's
coverage . dat file, and returns them as floating-point numbers.

remap palette

Remaps a CAC color palette (240 entries) to an algebraic palette (216 entries) to allow the
CAC data to be displayed without color flicker. The color flicker is caused by an application
using put the entire systems color palette. The result returned is an array of indices that point
to the algebraic color that is closest to the CAC palette color specified.

si_convert :
Converts a latitude or longitude value from an ASCII string to a scaled integer. The format of
the string is SDDDMMSS.SS where:

) = sign of the latitude or longitude (+ or —; must be present in the string);
DDD = degree portion (000 - 090 for latitude, or 000 - 180 for longitude);
MM = minutes portion (00 - 59);

SS.8S = seconds portion (00.00 - 59.99).

si_to_double
Converts a scaled integer to a floating-point number. The inverse function is double_to_si.

spdec
Decompresses a CAC compressed segment. Due to the peculiarities of MSDOS, this routine
has two different modes (one for MSDOS, and one for VMS and Unix).

Miscellaneous Access Routines

The miscellaneous CAC access routines, which are contained in the file cac_misc. c, consist
of five entry points. These routines are used to access the audit trail data on a CAC CDROM.
The audit trail provides a path back to the original paper charts used to create the ADRG
CDROM. For more information about specific ADRG files referenced in this section, refer to
NIMA (1989). Appendix C documents these routines in more detail.

*

read_areadrc

Reads the specified areadrc.dat file. This file contains a list of the CAC CDROM path
names of the Distribution Rectangle (DR) files for each ADRG source CDROM in a
particular scale and zone. This list can be used to locate the ADRG DR information for a
particular area of the CAC CDROM.

read_areasorc

Reads the specified areasorc.dat file. This file contains a list of the CAC CDROM path
names of the Source Graphic files for each DR from a source ADRG CDROM in a particular
scale and zone. This list can be used to locate the ADRG source information for a particular
area of the CAC CDROM.

read_cdheader
Reads the specified CD header.dat file. This file contains various information about a
specific ADRG source CDROM.

* read_drheader

Reads the specified DR header.dat file. This file contains information about a specific
DR for an ADRG source CDROM.

* read_sgheader
Reads the specified sgghed.dat file. The gg in the filename is the source graphics

number (01 - 99). The Source Graphics file contains information about the original paper
chart that was scanned into the ADRG CDROM.

Acknowledgements

This work was funded by the National Imagery and Mapping Agency (NIMA). The authors
thank the program managers at NIMA (Richard Glass and Pat Corkery) for supporting this
project. We also thank our fellow MDFF team members at NRLSSC for their hard work and
dedication to the CAC Processing System and the original CAC library: Marlin Gendron,
Michelle Mehaffey, Stephanie Myrick, and Michael Trenchard.

References

Lohrenz, Maura C., M.E. Trenchard, S.A. Myrick, P.B. Wischow, L.M. Riedlinger (1993). The
Navy Tessellated Spheroid Map Projection System: A Comprehensive Definition.
NRIL/FR/7441—92-9408. Naval Research Laboratory, Stennis Space Center, MS. August.

Lohrenz Maura C., J.E. Ryan (1990). The Navy Standard Compressed Aeronautical Chart
Database. NOARL Report 8. Naval Research Laboratory, Stennis Space Center, MS. July.

National Imagery and Mapping Agency (1989). Product Specifications for ARC Digitized
Raster Graphics (ADRG), 1* edition. DMA Report PS/2DF/100, April.

Appendix A: Entry Point Descriptions for High-Level Access

Routines

Note: byteis typedefed asunsigned char.

.. 9
CAC Ittt et e ce et s satssoessn e e s ns s sessnsns s e sssssesensassansbassnsen st s naeeneensesens
. 9
CAC_ING PAIELE ...ttt tsese st e et ee st aae s st sa et ee s e nenaasnse e serane
CAC_GEL Il ettt ettt s e s sttt en st ee e e ee e s e e e e sa e e 10
CAC_ZOL TC oeriiieeeieece ettt ettt s et st e s st s sae s eba s st e s baevabae s e e eebeesnnessbesensteeannatesaneenn 10

cac_init

short cac_init (char cac_device [],
int num_buffers)

cac_device: Name of device that CAC CDROM is loaded on.
(char[], passed)

num_buffers: Number of segments that can be buffered at a time.
(int, passed)

Returns: 1: Normal.
-1: Error reading CD_ID.DAT.
-2: Error reading CD_COVRG.DAT.
-3: Error: CDROM is not a valid CAC CDROM.

cac_inq_palette

short cac_inq_palette (char type,
short palid,
short *size,
byte red[],
byte green [] H
byte blue[])

type: Type of palette to load (DAY, NIGHT, or MONO)
(char, passed)

palid: Palette identification. This is a four digit number identifying the color palette
to use for the selected segment.
(int, passed)

size: Size of the color palette returned.
(short *, returned)

red: Array of size size containing the RED component of the color palette.
(byte [], returned)

green: Array of size size containing the GREEN component of the color palette.
(byte [], returned)

blue: Array of size size containing the BLUE component of the color palette.
(byte [], returned)

Returns: 1: Normal.
-1: Error opening PALETTE.DAT file.
-2: Error reading PALETTE.DAT file.

cac_get 1l

short cac_get Il (double lon,
double /at,
short *palid,
short *color)

lon: Longitude of requested pixel.
(double, passed)

lat: Latitude of requested pixel.
(double, passed)

palid: Palette identification of pixel at the specified /ar and lon.
(short *, returned)

color: Pixel value at specified Jat and lon. This is the index into the color palette.
(short *, returned)

Returns: 1: Normal
-1: Error: specified (lat, lon) point does not fall within bounds specified by
CD_COVRG.DAT file. le., the specified data is not on the CDROM.

cac get rc

short cac_get rc (long row,
long col,
short map zone,
short *palid)

row: Row of requested segment.
(long, passed)

col: Column of requested segment.
(long, passed)

map_zone: TS map zone that the requested segment is in. This is used to allow specifying
segments in Zone overlap areas.
(short , passed)

palid: Palette identification of segment at row/col.
(short *, returned)

Returns: 1: Normal
-1: Error: specified map zone is not on this CDROM.
-2: Error: specified segment at row/col is not on this CDROM.

10

Appendix B: Entry Point Descriptions for Low-Level Access Routines

CAC_TTEE cevvvetretit ettt ettt sttt s e e s e s e 12
AECOAE_KEY w.oorvireerreeticieecencttconcenceseseeesestestn e s sssesssseseseestessnessesseesssessesssssssesesese s e eesessonns 12
AECOMPIESS_SEZIMENLcouveeerennrrrrrneessessssseeseasensesseesessseeeseeseessassessessesses s ees e eseeneensene s eeseen. 12
AOUDIE tO_Si.....veiuiecucunrurianenerireniees e tesseeeteeeeeeee e eeesesses s ese s crereareessnee e eeneas reerneenenees 12
encode_Keycocuuuuene.... ettt a et e et s et s steese e besaeeeseent e st eeseens rrestesseeniaeenaeaaaaaas cerrernnaenens 13
©QZPOLuc ettt ettt et e e s reerreeereneenaasaeas 13
get_decompressed_piXel.......ccoooevereeeeceineeeeeeesereeee cressensnssnsasisreassnsstosaranasansansenasarasesesn 14
get_segment name............ et s e b e ae s e n e e nt s eabe e s e e enteeenaeseaneaeennnseennsennnes 14
JAIOR_CAIC ... cuueeiteeceet ettt eeen 15
load_legend data................ ettt e e te e et et e e em e e st seennessaeenseennes 16
POI2€G et reteeveenerneas et ae s neaenaens eetente et nenes 17
IC_CalC ettt ettt s aeeae st e s e b e enn e sennenneann vreenerne 17
read_cd COVIg.....everrrererrecereennene oot eetaanees teerrerreessen et e besse b e s s ansanantrsasesaesssensresanornes 18
read_cd_id........ccovverenennee.. ettt st et e et e bbb et et et et enee e enaeeneeeenes 18
read_compressed_SEZIMENt.........ocvwuruerrueeererureeceeeeeeesessesesessesesessesssesseos ettt s aantetann 19
T€AA DA COVETALE.......ouucuurencemsceremeneeresessnassassessseaseasesesseesseastesenseesses e ses e s e s e eseeeeneeseee s 19
TE€AA PAIEHE ...ttt eee e reeeeenteereens rereeeteenneeennens 20
TEMAP_PALCLLE ...ttt ettt st et ee e s s e e ee et et 20
SI_COMVETE coveuvntieerectectecescastsnssenseseusessessess s s s s s s e eaesassssees s ssesees e s s e s e s ens s oo en .21
SL_E0_AOUDIE ...ttt et s s e e s e 21
spdec ceteeneenteeaeeneas rereresteee e aarans teesarasenassesanesnsassssastiasssassnnanaans et e e steesnesnranne w22

11

cac_free
void cac_free (void)

Returns: None.

decode_key

void decode_key (char keyname [],
long *row,
long *col)

keyname: Keyname to decode.
(char [], passed)

row: Row number to encode.
(long *, returned)

col: Column number to encode.
(long *, returned)

Returns: None.

decompress_segment

short decompress_segment (char pa path [],
unsigned char *decomp_seg)

pa_path: Complete file specification of CAC segment file to decompress.

(char [], passed)

decomp_seg: Pointer to array containing the decompressed segment data.
(unsigned char *, returned)

Returns: 1: Normal
-1: Error reading the compressed segment file.

double_to_si
long double _to_si (double value)

value: Double precision number to convert to a Scaled integer.
(double, passed)

Returns: Encoded scaled integer as a signed long.

12

encode_key

void encode_key (long *row,
long *col,
char keyname [|)

row: Row number to encode.
(long *, passed)

col: Column number to encode.
(long *, passed)

keyname: Resultant encoded keyname.
(char [], returned)

Returns: None.

eq2pol

void eq2pol (double *atin,
double *longin,
double *atout,
double *longout,
short *zone)

latin: Equatorial latitude to convert.
(double *, passed)

longin: Equatorial longitude to convert.
(double *, passed)

latout: Polar latitude.
(double *, returned)

longout: Polar longitude.
(double *, returned)

zone: Polar zone to use in the conversion.

(short *, passed)

Returns: None.

13

get_decompressed_pixel

short get decompressed_pixel (short y,
short x)

y: Y coordinate of a pixel in the compressed segment.
(short , passed)

x: X coordinate of a pixel in the compressed segment.
(short, passed)

Returns: Short integer corresponding to the X and Y coordinates of the requested pixel.

get_segment_name

void get segment name (char pa path[],
long row,
long col,
short zone,

char seg path[])

pa_path: Path to the palette area subdirectory.
(char [], passed)
Note the “.” character at the end of VMS path names, and the “/ ” or “\” in
Unix or MS-DOS filenames. The following are sample paths to the same
palette area subdirectory on VMS, Unix, and MS-DOS systems:
VMS: CDROM:[MAP3|PA012901.
Unix: /edrom/map3/pa012901/
MSDOS: D:\map3\pa012901\

row: Row number of segment to decompress.
(long, passed)

col: Column number of segment to decompress.
(long, passed)

zone: Tesselated Sphere zone number cooresponding to pa_path.
(short, passed)

seg_path: Complete path specification for requested segment.
(char [], returned)
E.g., VMS: CDROM:[MAP3.PA012901.R000015]12345678.214
Unix: /cedrom/map3/pa012901/r000015/12345678.214
MSDOS: D:\map3\pa012901\r000015\12345678.214

Returns: None.

14

latlon_calc

void latlon_calc (short *zone,

zone:
scale:
row:
col:
lat:
lon:

Returns:

short *scale,
long *row,
long *col,
double *lat,
double */on)

Zone to use in the conversion to latitude/longitude.

(short *, passed)

Scale to use in the conversion to latitude/longitude.

(short *, passed)

Tesselated sphere row number to convert.
(long *,passed)

Tesselated sphere column number to convert.
(long *,passed)

Latitude based on scale, zone, row and column.
(double *, returned)

Longitude based on scale, zone, row and column.
(double *, returned)

None.

15

load legend data

void load_legend_data (char legend path [|,
unsigned char **legend ptr,
unsigned char rbuf[],
unsigned char gbuf/],
unsigned char bbuf[],
unsigned long *legend_x,
unsigned long *legend y)

legend path: File specification of the directory containing the legend data.
(char [], passed)

legend_ptr: Pointer to the beginning of the array containing the legend image data.
(unsigned char **, returned)

rbuf. Red component of the legend image's palette.
(unsigned char [], returned)

gbuf: Blue component of the legend image's palette.
(unsigned char [], returned)

bbuf: Green component of the legend image's palette.
(unsigned char [], returned)

legend_x: Size of the legend image in the "x" direction (columns).
(unsigned long *, returned)

legend y: Size of the legend image in the "y" direction (rows).
(unsigned long *, returned)

Returns: 1: Normal
-1: Error opening legend header file.
-2: Error reading legend header file.
-3: Error opening legend image file.
-4: Error reading legend image file.

pol2eq

void pol2eq (double *latin,

latin

longin

latout

longout

Returns

double *longin,
double *latout,
double *longour)

: Polar latitude to convert.
(double *, passed)

: Polar longitude to convert.
(double *, passed)

: Equatorial latitude.
(double *, returned)

: Equatorial longitude.
(double *, returned)

: None.

rc_calc

void rc_calc (double *at,

lat:

lon:

scale:

zZone:

col:

row:

Returns:

double *lon,
short *scale,
short *zone,
long *row,
long *col)

Latitude to convert.
(double *, passed)

Longitude to convert.
(double *, passed)

Scale to use in the conversion to row/column.
(short *, passed)

Zone to use in the conversion to row/column.
(short *, passed)

Tesselated sphere column number based on specified scale and zone.
(long *, returned)

Tesselated sphere row number based on specified scale and zone.
(long *,returned)

None

17

read_cd_covrg

short read cd covrg (char pathf],
char pa nums[MAX PAS][S],
short *num_pas,
double pa_latlonfMAX PAS][4],
char pa zones/[MAX PAS])

path: Complete path specification to the CDROM’s CD_COVRG.DAT file.
(char [], passed)

pa_nums: Two-dimensional array of palette area names from the CD_COVRG.DAT file.
Each palette area name is eight bytes. The maximum number of possible
palette areas on one CDROM is MAX PAS (see CAC_INC.H).
(char [][8], returned)

num_pas: The number of palette areas on the CDROM.
(short *, returned) '

pa_latlon: Two dimensional array of approximate coverages of each palette area on the
CDROM. The order of the latitude/longitude data in the array is as follows:
[*][0]= West longitude
[*][1]= East longitude
[*1[2] = South latitude
[*][3] = North latitude
(double [][4], returned)

pa_zones: Array of TS zone numbers corresponding to pa_nums above.
(char [], returned)

Returns: 1: Normal '
-1: Error opening CD_COVRG.DAT file.
-2: Error reading the number of palette areas from CD_COVRG.DAT file.
-3: Error reading a palette area name from CD_COVRG.DAT file.
-4: Error reading a palette area lat/lon set from CD_COVRG.DAT file.

read_cd_id

short read cd_id (char pathf],
char data[])

path: Complete path specification to the CDROMs CD_ID.DAT file.
(char [], passed)

data: Contents of specified CD_ID.DAT file.
(char [], returned, requires twenty bytes)

Returns: 1: Normal
-1: Error opening CD_ID.DAT file.
-2: Error reading CD_ID.DAT file .

18

read_compressed_segment

short read_compressed_segment (char pa_pathf],
unsigned char *codebook,
unsigned char *compseg)

pa_path: Complete file specification of CAC segment file of interest.
(char [], passed)

codebook: Codebook to decompress segment (codebook requires 1024 bytes of memory).
(unsigned char *, returned)

compseg: Compressed segment to be decompressed (compressed segment requires 16384
bytes of memory).

(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening compressed CAC segment file.
-2: Error reading compressed CAC segment codebook.
-3: Error reading compressed CAC segment data.

read_pa_coverage

short read _pa_coverage (char name[],
double *minlon,
double *maxlon,
double *minlat,
double *maxlar)

name: PA coverage filename (full path).
(char [], passed)
E.g., VMS: CDROM:[MAP3.PA012901JCOVERAGE.DAT
Unix: /edrom/map3/pa012901/coverage.dat
MSDOS: D:\map3\pa012901\coverage.dat

minlon: Minimum longitude coordinate.
(double *, returned)

maxlon: Maximum longitude coordinate.
(double *, returned)

minlat: Minimum latitude coordinate.
(double *, returned)

maxlat: Maximum latitude coordinate.
(double *, returned)

Returns: 1: Normal
-1: Error opening PA COVERAGE.DAT file.
-2: Error reading PA COVERAGE.DAT file .

19

read_palette

short read _palette (char type,
char pathf],
unsigned char redf j,
unsigned char green/],
unsigned char blue/])

type: Color palette type (day, night, mono).
(char, passed)

path: Complete file specification of CAC color palette.
(char [], passed)

red: Red component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

green: Green component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

blue: Blue component of color palette (requires at least 256 bytes).
(unsigned char *, returned)

Returns: 1: Normal
-1: Error opening CAC color palette.
-2: Error reading CAC color palette.

remap_palette

unsigned char *remap_palette (unsigned char red/ J,
unsigned char green/],
unsigned char blue/])

red: Red component of color palette to remap.
(unsigned char *, returned)

green: Green component of color palette to remap.
(unsigned char *, returned)

blue: Blue component of color palette to remap.
(unsigned char *, returned)

Returns: Pointer to an array containing indices that represent the mapping of the
specified CAC color map entries to the nearest color in an algebraic color map.

20

si_convert

long si_convert (char value[],
short type)

value: Character string of latitude or longitude to convert to a scaled integer number.
The sign of the latitude and longitude value (i.e., "+" or "-") must be present.
(char [], passed)

type: Denotes whether value is a longitude or latitude (0 = longitude, 1 = latitude).
(enum{longitude,latitude}, passed)

Returns: The scaled integer of value is returned as a signed long.

si_to_double
double si_to_double (long si)

si: Scaled integer to be converted to a double.
(long, passed)

Returns: Double equivalent of decoded scaled integer.

21

spdec

VMS and Unix usage:

void spdec (unsigned char inptr[16384],
unsigned char spcbptr[16384],
unsigned char outptr[65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed.

(unsigned char [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment.
(unsigned char [], passed)

outptr: Decompressed segment (requires 65536 bytes).
(unsigned char [], returned)

Returns: None.

MSDOS usage:

void spdec (unsigned char far inptr[16384],
unsigned char far spcbptr[16384],
unsigned char far outptr{65536])

inptr: Compressed segment (assumed to be 16384 bytes) to be decompressed.

(unsigned char far [], passed)

spcbptr: Codebook (assumed to be 1024 bytes) to decompress the segment.
(unsigned char far [], passed)

outptr: Decompressed segment (requires 65536 bytes).
(unsigned char far [], returned)

Returns: None.

22

Appendix C: Entry Point Descriptions for Miscellaneous Access

Routines
TEAA ALEAAICvoeveeetetceecaiece ettt sttt ses et s e e et s e e s e s s es e e oo 24
TEAA_ATEASOTCeuiecverecmceneuensesastenanas s sas s seeaesecsessesseeseseseseaesssens s sese s s s s eeeeens e sesenn 24
T€AA_CANEAUET ...t eeeese s e s s e s s e s e et 25
read_drheader.............ooecuevueececneeeeeeeeeennn. et R e sa oot ee s s s s 25
TEAA_SZNEAUET.......o.oeo oottt et e eesseeseee s s s e s s e eeenn 25

23

read_areadrc
Must include file areadrc.h.

short read_areadrc (char path[],
struct areadrc *areadre,
short *numpas)

path: Complete file specification of the AREADRC.DAT file.
(char [], passed)

areadrc: Structure to contain data read from AREADRC.DAT file.
(struct areadrc *, returned)

numpas: Number of PA areas (zones) in the AREADRC.DAT file.
(short *, returned)

Returns: 1: Normal
-1: Error opening AREADRC.DAT file.
-2: Error reading AREADRC.DAT file.

read_areasorc
Must include file areasorc.h.

short read_areasorc (char path[],
struct areasorc *areasorc,
short *numpas)

path: Complete file specification of the AREASORC.DAT file.
(char [], passed)

areasorc: Structure to contain data read from AREASORC.DAT file.
(struct areasorc *, returned)

numpas: Number of PA areas (zones) in the AREASORC.DAT file.
(short *, returned)

Returns: 1: Normal
-1: Error opening AREASORC.DAT file.
-2: Error reading AREASORC.DAT file.

24

read_cdheader (Must include file cd_header.h).

short read_cdheader (char pathf J,
struct cdheader *cdheader,
short *numpas)

path: Complete file specification for the CD HEADER.DAT file.
(char [], passed)

cdheader: Structure to contain data read from CD HEADER.DAT file.
(struct cdheader *, returned)

Returns: 1: Normal
-1: Error opening CD HEADER.DAT file.
-2: Error reading CD HEADER.DAT file.

read_drheader (Must include file dr header.h).

short read_drheader (char pathf] ,
struct drheader *drheader,
short *numpas)

path: Complete file specification of the DR HEADER.DAT file.
(char [], passed)

drheader: Structure to contain data read from DR HEADER.DAT file.
(struct drheader *, returned)

Returns: 1: Normal
-1: Error opening DR HEADER.DAT file.
2: Error reading DR HEADER.DAT file.

read _sgheader (Must include file sg_header.h).

short read_sgheader (char path[],
struct sgheader *sgheader,
short *numpas)

path: Complete file specification of the SG HEADER.DAT file.
(char [], passed)

sgheader: Structure to contain data read from SG HEADER.DAT file.
(struct sgheader *, returned)

Returns: 1: Normal
-1: Error opening SG HEADER.DAT file.
-2: Error reading SG HEADER.DAT file .

25

Appendix D: High Level Function Calling Order

.
TAIN_ L Corriiieniieteeneiestecte ettt re et e e e s s e s essest st e ee e se s et eeneeeseeaeesseasesasesasensesrenen 27

INAIIL_TC.Courrerirertescnescaisescsescacscscsesttucacaestetstesatssssstesssesesssssssnsesesssesessesesssessssasnsasasesessssnsnssnseessssenn 29

26

main_Il.c

#include "cac_inc.h"
#include "m4_const.h"

int main (unsigned int argc, char *argv[])

{
short size, i;
int status;
double lat,lon;
short color;
short palid, prev_palid=0;
char debug=0;
static unsigned char decomp_seg[256][256]; /* Decompressed CAC segment */

unsigned char red[256], /* Selected color palette */
green[256],
blue[256];

/* argv[1]: CDROM device name */
/* argv[2]: Number of segments to buffer */
cac_init (argv[1], atoi(argv[2]));

while (TRUE)
{
printf("Lat,Lon (separated by a comma): ");
scanf ("%If,%If", &lat,&lon);
status = cac_get_l1 (lon, lat, &palid, &color);
if (status =1)
{
printf ("Lat: %6.21f Lon: %7.21f\n", lat, lon);
printf ("Row: %6d Col: %6d\n", cac.row, cac.col);
printf (" Palette ID: %d\n", palid);
printf ("Pixel color: %d\n", color);
if (prev_palid != palid)
{
status = cac_inq_palette (day, palid, &size, red, green, blue);
printf ("Palette loaded for PA#: %d\n",palid);
prev_palid = palid;

27

if (debug)
for (i=0; i<size; i++)
printf("%x %x %x\n", red[i],green[i],blue[i]);

}

else
printf ("Position NOT found on CAC...\n");

} /* End "while (TRUE)" */

28

main_rc.c

#include "cac_inc.h"
#include "m4 const.h"

int main (unsigned int argc, char *argv[])

{
short size, i;
unsigned char red[256], /* Selected color palette */
green[256],
blue[256];
int status;

long row,col;

short color, map_zone;

short palid, prev_palid=0;

char debug=0;

static unsigned char decomp_seg[256][256]; /* Decompressed CAC segment */
/* argv[1]: CDROM device name */
/* argv[2]: Number of segments to buffer */

cac_init (argv[1], atoi(argv[2]));

while (TRUE)
{

printf("Row,Column,Zone (separated by commas): ");
scanf ("%ld,%ld,%d", &row, &col, &map_zone);

status = cac_get_rc (row, col, map_zone, &palid, (unsigned char *)decomp_seg);

if (status)
{
printf ("Row: %61d Col: %6ld\n", row, col);
printf (" Palette ID: %d\n", palid);
printf (" cac.row: %6ld cac.col: %6ld\n", cac.row, cac.col);
if (prev_palid != palid)
{
status = cac_inq_palette (day, palid, &size, red, green, blue);
printf ("Palette loaded for PA#: %d\n",palid);
prev_palid = palid,;

29

if (debug)
for (i=0;i<size;it++)
printf ("%x %x %x\n",red[i],green[i],blueli]);

}

else
printf ("Position NOT found on CAC...\n");

} /* End "while (TRUE)" */

30

